On a Constant in the Theory of Trigonometric Series

By Robert F. Church

The note "A constant in the theory of trigonometric series" in the October 1964 issue of Mathematics of Computation provided us with a test for our recently constructed algorithms for the computation of roots of functions, and for numerical quadrature in the presence of singularities. The latter algorithm, utilizing the Gaussian 8-point quadrature formula applied to sub-intervals of variable length, involves a sufficiently small number of ordinates that computational labor and round-off error do not become problems. Use of these algorithms indicated the value $\alpha_{0}=.3084438$, for the root of the equation $\int_{0}^{3 \pi / 2} u^{-\alpha} \cos u d u=0$, differing from the reported value, .30483 , in the third place. To check this result, we made the transformation $u=x^{4}$ to weaken the character of the singularity at the origin, and obtained the following table by conventional numerical quadrature, confirming our result:

α	$F(\alpha)$
.308441	$-.99\left(10^{-5}\right)$
.308442	$-.63\left(10^{-5}\right)$
.308443	$-.28\left(10^{-5}\right)$
.308444	$.08\left(10^{-5}\right)$
.308445	$.44\left(10^{-5}\right)$
.308446	$.79\left(10^{-5}\right)$.

Sperry Rand Research Center

North Road
Sudbury, Massachusetts
Received October 28, 1964.

On a Constant in the Theory of Trigonometric Series

By Yudell L. Luke, Wyman Fair, Geraldine Coombs and Rosemary Moran

In a recent note, Boas and Klema [1] considered

$$
\begin{equation*}
F(\alpha)=\int_{0}^{3 \pi / 2} u^{-\alpha} \cos u d u, \quad R(\alpha)<1 \tag{1}
\end{equation*}
$$

and gave some computations from which they concluded that a zero α_{0} of $F(\alpha)$ lies between 0.30483 and 0.30484 . Since their tabulated values of $F(\alpha)$ in the vicinity of the root are given to 8 D and there are eight such entries, it would seem, since $F(\alpha)$ is analytic for $R(\alpha)<1$, that the zero could be given to more places by differencing and making use of ordinary inverse interpolation techniques. It is found

